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ABSTRACT A tool in the form of a habitat suitability index model (HSI) for the eastern oyster, Crassostrea virginica, was

adapted to evaluate and compare the effects of alternative restoration plans in southwest Florida. A component of a large

forecasting model, this tool simulates system response by examining the impact of freshwater inputs into the system. The eastern

oyster is a good indicator species formodeling because of its sedentary nature and its susceptibility to natural and artificial changes.

In addition, oysters form a complex three-dimensional reef structure, which provides habitat and food for numerous species of fish

and invertebrates. The model focuses on salinity, temperature, depth, substrate, and high flow frequency as the particular

requirements to determine habitat suitability for the eastern oyster. A geographic information system (GIS) incorporates the

oyster HSI model, which includes larval and adult components, to determine responses spatially and temporally to facilitate the

decision making process. This paper evaluates four hydrologic and land use scenarios for the C-43 West Basin Reservoir Project.

Model results indicate that the Preferred Flow scenario and the future conditions with the Comprehensive Everglades Restoration

Plan have higher HSI values then either the existing conditions or the future without the Comprehensive Everglades Plan.

KEY WORDS: eastern oyster, Habitat Suitability Index, Crassostrea virginica, Caloosahatchee, restoration, alternative

evaluation, Freshwater impacts

INTRODUCTION

Florida’s Everglades was once an expansive, ecologically

productive system (Davis & Ogden 1994). Water flowed
through the Kissimmee River into Lake Okeechobee, spilling
over the southern rim of the lake during high precipitation

events and into an extensive Everglades system flowing as a
sheet of water until it reached the southern estuaries. Fragmen-
tation and hydrologic alterations (Light & Dineen 1994, Ogden

et al. 2005a, Ogden et al. 2005b) have led to the loss of this sheet-
flow across the system (Science Coordination Team 2003) and
into estuaries (McIvor et al. 1994).

The Caloosahatchee Estuary is located on the southwest

coast of Florida between the cities of Cape Coral and Fort
Myers (Fig. 1). Most of the freshwater flowing into the estuary
comes from the Caloosahatchee River. Historically, the Caloo-

sahatchee River was a meandering system with numerous
oxbows, flowing from its headwaters at the marshlands of Lake
Flirt, west of Lake Okeechobee, to the Gulf of Mexico.

Activities that led to its degradation began in the late 1800s,
with Hamilton Disston’s dredging and channelization project,
which included a connection to Lake Okeechobee and con-

struction of an extensive canal network associated with agri-
cultural development in the watershed. The channelization and
canal building process (C-43) has changed the timing, quantity,
quality, and direction of runoff within the watershed; and it led

to abnormal salinity fluctuations. The operation of three water
control structures allowing large periodic regulatory releases
from Lake Okeechobee has reduced the tidally influenced

portion of the estuary.
Two seasonal trends influence Southwest Florida estuaries,

including the Caloosahatchee estuary: seasonal variation in air

and water temperature and seasonal variation in rainfall and
water releases (Tolley & Volety 2005). During dry, cooler
months (November to May) little or no rainfall is present and

very little freshwater flows from Lake Okeechobee into the
Caloosahatchee estuary, resulting in estuarine salinities ranging
from 28–38 ppt. In warmer, wet months (June to October), the
Caloosahatchee estuary experiences heavy rainfall as well as

significant freshwater releases from Lake Okeechobee for flood
control (;1,000–20,000 cubic feet per second), resulting in
physical flushing of the estuary as well as depressed estuarine

salinities (;0–10 ppt, Volety et al. 2003). Thus, the key stressor
in the Caloosahatchee estuary is an altered hydrology, which
includes unnatural high and low water deliveries to the estuary.

Prior to these impacts, the Caloosahatchee estuary was a
highly productive system with an abundance of aquatic plants
and animals. Today, abundance, health, and functionality of

these species have been greatly reduced (Harris et al. 1983,
Chamberlain & Doering 1998a, Doering & Chamberlain 1999).

The Comprehensive Everglades Restoration Plan (CERP),
developed by the United States Army Corps of Engineers

(USACE) and the South Florida Water Management District
(SFWMD), provides a framework and guide to improve
quality, quantity, timing, and distribution of water in the

Everglades ecosystem (United States Army Corps of Engineers
and South Florida Water Management District 1999). A series
of eight expedited projects, together called Acceler8, implement

the initial phase of Everglades restoration for the State of
Florida. The C-43 West Basin Reservoir (an Acceler8 project
and a component of a larger restoration effort for the Caloo-

sahatchee River and estuary) focuses on storing regulatory
releases from Lake Okeechobee and storm water runoff.
Removing this surplus water will reduce excess water flow to
the Caloosahatchee estuary during the wet season and provide

essential flow during the dry season. The C-43 project will*Corresponding author. E-mail: avolety@fgcu.edu
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consist of an above-ground reservoir located along the Caloo-
sahatchee River, Florida with a storage capacity of ;200

million cubic meters.
To arrive at a final plan design, a series of stepsmust be taken

(Yoe & Orth 1996). Two critical steps of this process are the
design and evaluation of alternative restoration plans and

comparison of effects of each alternative. Through an evalua-
tion process, each individual restoration alternative is assessed
and its effects are quantified and evaluated. For the C-43 West

Reservoir Project, the evaluation tool is a forecasting model.
This forecasting model is a set of habitat suitability index (HSI)
models for individual or multiple species, or both, which

relate selected environmental metrics to habitat of each organ-
ism. The forecasting model applies each HSI to restoration
alternatives with the assumption that as changes for each

alternative occur, so will extent and quality of suitable habitat.
Another assumption is that habitat suitability is related to
distribution and abundance of the species (or life stage)
modeled (Klopatek & Kitchens 1985).

This paper selected the species used in this evaluation
process because of a combination of ecological, recreational,
and economic importance. Additionally, they must have an

established link to stressors of management interest (Barnes
2005). The eastern oyster, Crassostrea virginica, one species

chosen for this process, is important commercially and recrea-
tionally in fisheries along the Atlantic Ocean and Gulf of

Mexico coasts of North America. Whereas this role of oysters
as a fishery is well known, their ecological significance remains
under appreciated and under studied (Coen et al. 1999a).
Individual oysters filter 4–34 L of water per hour, removing

phytoplankton, particulate organic carbon, sediments, pollu-
tants, and microorganisms from the water column (Newell
1988, Newell & Langdon 1996). This filtration results in greater

light penetration immediately downstream promoting growth
of submerged aquatic vegetation. Although oysters assimilate
most of the organic matter that they filter, they deposit the

remainder on the bottom where it provides food for benthic
organisms. Furthermore, the oyster’s ability to form large bio-
genic reefs (Coen et al. 1999b) qualifies it as a keystone species.

Oysters and the complex, three-dimensional, reef structure

they form attract numerous species of invertebrates and fishes
(Ingle & Smith 1956, Woodburn 1965, McDonald 1982, Peters
1981, Meyer 1994). To date, over 300 species have been

identified as depending, either directly or indirectly, on oyster
reefs (Wells 1961, Tolley et al. 2006). Many of these organisms
in turn serve as forage for important fishery species (Marshall

1958, Tabb & Manning 1961, Fore & Schmidt 1973, Gilmore
et al. 1983, Peters & McMichael 1987, McMichael & Peters
1989).

Because of its sedentary nature, the eastern oyster is
susceptible to natural and artificial ecosystem changes, making
it a good indicator species for this restoration effort. Environ-
mental disruptions are responsible for reducing oyster popula-

tions and their traditional habitats (Cake 1983). Although not
currently harvested in the Caloosahatchee estuary, oysters have
been identified in this area as a valued ecosystem component

(VEC) (Chamberlain &Doering 1998a, Chamberlain &Doering
1998b). Historical records indicate that oyster reefs were once
significant features of the Caloosahatchee estuary and adjacent

San Carlos Bay. However, populations have declined signifi-
cantly to less than 7.5 ha2 (18 acres) (Volety et al. unpublished
results).

Adult oysters can temporarily tolerate a wide range of

salinities ranging from 0–42.5 ppt. Normal species distribution
occurs between 5 and 40 ppt (Ingle & Dawson 1953, Loosanoff
1953a, Wells 1961, Galtsoff 1964, Menzel et al. 1966) with

optimal salinities in Southwest Florida ranging between 14 and
28 ppt (Volety et al. 2003), but varying by latitude and
geography. They can survive at salinities 4–5 ppt indefinitely

(Loosanoff 1932, Volety et al. 2003) and can occur at salinities
as low as 0.2–3.5 ppt for up to five consecutive months (Butler
1952), including those in the upstream Caloosahatchee estuary

where they can encounter zero salinities for several months
when regulatory freshwater releases are made (Volety &
Savarese 2001, Savarese et al. 2003, Volety et al. 2003). Reefs
located near the head of an estuary, where salinities range from

0–15 ppt, are characterized by oyster populations that are small,
rounded, and sparse because of frequent flooding and high
mortality rates (Butler 1954, Volety & Savarese 2001, Savarese

et al. 2003). Spat recruitment and growth rates are also low in
this region. Where salinities are between 15 and 20 ppt,
populations are dense, reproductive activity high, predator

numbers low, and spat recruitment and growth rates high.
Near themouth of a typical Gulf Coast estuary with a salinity of
25 ppt, growth and reproductive rates are typically high;

Figure 1. The Caloosahatchee estuary, Lee County Florida.
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however, predation and competition are also high. Where the
estuary opens into the high-salinity Gulf waters, oyster reefs are

sparse, spat recruitment and growth are low, diseases and
predators are high, and suitable substrate is lacking. Volety
et al. (2003), Volety and Savarese (2001), and Savarese et al.
(2003) observed similar conditions in Florida estuaries.

Juvenile oysters less than one year old can survive at
salinities of 5 ppt (Chanley 1958, Volety et al. 2003); however,
very little growth is observed below 5 ppt, slow growth observed

at 12 ppt, and normal growth occurs between 12 and 27 ppt
(Chanley 1958). Under laboratory conditions, Volety et al.
(2003) observed highmortality (40% to 75%) of juvenile oysters

exposed to <5 ppt and >35 ppt salinities for 2 wk, whereas very
little mortality (5%) was seen at salinities of 15–25 ppt.

Salinity also affects gametogenesis, condition index, and
spawning in oysters (Shumway 1996). Low salinities impair

gametogenesis at <5 ppt, whereas normal gametogenesis
occurred above 7.5 ppt (Loosanoff 1953a, Loosanoff 1953b).
Oysters from Texas showed suppressed gonadal activity at

salinities <6 ppt (Butler 1949). Similar trends were observed in
the Caloosahatchee river oysters in 2003 when the estuary water
was significantly fresh because of regulatory freshwater releases

(Volety, unpublished results).
The protozoan parasite, Perkinsus marinus, has devastated

oyster populations in the Atlantic (Burreson & Ragone-Calvo

1996), as well as in the Gulf of Mexico (Soniat 1996), where it
is currently the primary pathogen of oysters. Andrews (1988)
estimates that P. marinus can kill ;80% of the oysters on a reef.
Temperature and salinity influence the distribution and preva-

lence of P. marinus with higher values favoring the parasite
(Burreson & Ragone-Calvo 1996, Soniat 1996, Chu & Volety
1997, La Peyre et al. 2003). Laboratory studies by Volety (1995)

and Chu and Volety (1997) suggest salinity to be the most
important factor influencing the disease susceptibility and
disease progression of P. marinus in oysters. High salinities also

invite various predators such as crabs, starfish, boring sponges,
oyster drills, and diseases (Butler 1954, Hopkins 1962, Galtsoff
1964, Livingston et al. 2000, Menzel et al. 1966, MacKenzie
1970, Manzi 1970, Shumway 1996). Other species that are

tolerant of low salinities but pose serious threat to oysters
include starfish Asteria forbesi, whelks Fasciolaria hunteria
(Loosanoff 1945, Wells 1961), flatworms Stylocus ellipticus

(Loosanoff 1956), and blue crabs Callinectes sapidus (Menzel
et al. 1966). Field studies byWilbur (1992) in Apalachicola Bay,
Florida, and by Wilbur and Bass (1998) in Matagorda Bay,

Texas showed reduced oyster landings two years after low
freshwater flow periods, possibly because of higher estuarine
salinities and resulting predation of oyster spat by marine

predators. Similarly, higher predation rates caused by oyster
drills were observed in the Apalachicola Bay by Livingston et al.
(2000).

In the Caloosahatchee estuary there is a seasonal cycle of

water temperature with temperatures around 24�C to 34�C
during the late spring through fall (April to October) and
between 14�C and 23�C from late fall through early spring

(November to March). Oysters in the Caloosahatchee estuary
reproduce continuously between April and October. The com-
bination of shallow environments, warm water temperature,

and food availabilitymay account for the long spawning period,
which also coincides with low salinities and high flows in the
estuary. This paper presents the process that was used to adapt a

habitat suitability model for the eastern oyster and demonstrate
its use for the assessment of restoration alternatives in the

Caloosahatchee Estuary, Florida.

MATERIALS AND METHODS

Model Development and Application

The HSI for the eastern oyster was developed using adult

and larval components to capture highest sensitivities of oysters
to environmental changes resulting from restoration activities.
The HSI model assesses habitat quality and suitability with

a monthly or yearly numerical output ranging from 0 (least
suitability) to 1 (most suitability) (Cake 1983, Soniat & Brody
1988). The models calculate habitat suitability, where compo-
nent indices are the weighted geometric mean of the metrics.

The geometric mean is derived from the product of the metrics
rather than the sum (as in the arithmetic mean) and has the
appropriate property that, if any of the individual metrics are

unsuitable for species success (i.e., the value of the metric is
zero), then the entire index goes to zero. The final HSI is the
minimum score of the larval and adult component indices. Each

metric can be weighted (w) with regard to importance; however,
the sum of the weights is constrained to be one.

Livingston et al. (2000) previously modeled the relationship

between freshwater inputs using a hydrodynamic model and
various life history stages in the Apalachicola Bay, Florida.
Their model used salinities and flows from the hydrodynamic
model to predict oyster mortality in the bay. Percent of bottom

covered with suitable cultch, mean summer water salinity,
abundance of living oysters, historic mean water salinity,
frequency of killing floods, and substrate firmness were chosen

as variables in the previous models (Cake 1983, Soniat & Brody
1988). As previously mentioned, water flows within the Caloo-
sahatchee estuary are managed for flood control. High

temperatures and low salinities in the summer time alternate
with high salinities and low temperatures in the winter time and
contrast with other natural systems in the Gulf of Mexico, as
well as in the Chesapeake Bay, where higher temperatures and

salinities coincide within a given season. Because salinity,
temperature, flow, and distribution of oysters serve as proxies
for most of the variables in previous models (suitable cultch,

mean water salinity, historic mean salinity, frequency of killing
flood, and substrate availability), salinity, temperature, sub-
strate, and high flow frequency have been chosen as the

particular requirements for determining habitat suitability for
the eastern oyster in the Caloosahatchee estuary. Table 1 lists
scientific literature indicating specific requirements and data

from local monitoring programs, along with their source, for
both adults and larval oysters. For the purpose of alternative
selection for the C43 West Basin Reservoir Project, substrate
has been turned off, or removed from the model. This is because

depth within model boundaries does not exceed 3 m, except for
within navigation channels, which are not available areas for
oyster settlement or growth and because including substrate in

the model application limits restoration benefits to areas where
oysters are already present, as that is the only hard substrate
data available to the model. The addition of hard substrate to

areas with high habitat suitability will be included as part of the
restoration plan. Specific temperature, salinity, and flow values
used for generating HSI results are presented in Figure 2.
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HSI Formula

Below is the formula used to calculate theHSI for the eastern

oyster in the Caloosahatchee estuary:

Eastern Oyster LarvalComponentIndex ¼ (Salinityw1 * Tem-
peraturew2 * Floww3)

Eastern Oyster AdultComponentIndex¼ (Salinityw4 * Temper-
aturew5 * Substratew6)

HSIMay–November ¼ MIN (LarvaeComponentIndex, Adult-

ComponentIndex)
HSIDecember–April ¼ (AdultComponentIndex)

where w is a weight between 0 and 1 assigned to each variable
and the substrate component can be turned on or off in the
model depending on the users need.

The oyster model was programmed in Microsoft Visual
Basic using ESRI ArcObjects geographic information system
(GIS) libraries to model habitat response spatially within a grid
system that encompasses the spatial extent of the estuary. Each

modeled grid cell is ;45 m2. As a result, the model describes a
response surface of habitat suitability values that vary spatially

according to environmental conditions at specific locations
(grid cells) in the estuary, and temporally according to patterns

in environmental variables. Additionally, the GIS provides the
ability to create visual aids to facilitate the decision making
process.

Input data for the model came from multiple sources. The

South Florida Water Management Model (SFWMM) coupled
with an estuary-salinity regressionmodel provided salinity data.
The SFWMM simulates major components of the hydrologic

cycle and estimates regional scale hydrologic responses (Mac-
Vicar et al. 1984, Hydrologic Realities, Inc. 2005), supplying
flow from the S-79 water control structure. The regression

model uses this flow data to produce grids of salinity values for
different flow alternatives. Previous projects (Avineon 2003,
Hansen & Perry 2003, Tetra Tech Inc. 2004) provided substrate,
bathymetry, and temperature data.

Modeling Scenarios

Four hydrologic scenarios have been evaluated for the C-43
West Reservoir Project: (1) a preferred flow frequency for the

TABLE 1.

Habitat requirements for the eastern oyster.

Variable Value Source

Oyster Larvae: Salinity Limits: 5& and 35& Calabrese and Davis (1970).

Optimal: 10& to 30& Carriker (1951).

Peak: 20& to 22& Castagna and Chanley (1973).

Settlement peak: 25& to 29&. Chatry et al. (1983).

In Caloosahatchee most favorable: Davis (1958).

15& to 25& Hopkins (1931).

Menzel et al. (1966).

Savarese et al. (2004).

Savarese et al. (2003).

Volety et al. (2003).

Oyster Larvae: Temperature Optimal: 20�C to 30�C Loosanoff and Davis (1963).

With peaks at the higher end Stanley and Sellers (1986).

Oyster Adult: Temperature Optimal: 20�C to 30�C Cake (1983).

Can tolerate: 1�C to 49�C Copeland and Hoese (1966).

Stop feeding: 6�C to 7�C Galtsoff (1964).

Physiological functions cease: 42�C Stanley and Sellers (1986).

Stenzel (1971).

Oyster Adult: Salinity Optimal: 10�C to 20�C Butler (1954).

Normal range: 10�C to 30�C Eleuterius (1977).

Galtsoff (1964).

Can tolerate: 5�C to 40�C Gunter and Geyer (1955).

Stenzel (1971).

Oyster Larvae and

Adult: Depth Optimal: 0.5–3 m Volety et al. (2003).

Oyster Larvae and

Adult: Substrate

Oyster shells, calcareous remains of

other molluscs, wooden material,

rocks, gravel, and solid refuse

Butler (1954).

Galtsoff (1964).

Hedgepeth (1953).

Lunz (1958).

MacKenzie (1977).

MacKenzie (1981).

MacKenzie (1983).

Oyster Larvae: Flow Optimal: 500–2500 cfs (14.15–70.79 cm)

in the Caloosahatchee River resulting in

salinities above 5–10 ppt.

Shumway (1996). Wilson et al. (2005)

Flows >4,000 cfs (113.26 cm) will restrict

larval settlement

Volety et al. (2003).

Volety (2003 et al.).Wilson et al. (2005)
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Caloosahatchee estuary based on a hydrologic target set to

provide an optimum inflow range that includes natural varia-

tion in salinity to insure a diverse composition of estuarine biota

(Table 2) (Chamberlain & Doering 1998a, Chamberlain &

Doering 1998b, Doering & Chamberlain 1999, Doering &

Chamberlain 2000, Doering et al. 1999, Doering et al. 2001,

Doering et al. 2002, Chamberlain et al. 2003); (2) an existing

conditions scenario based on hydrology, water demands and

land use in the year 2000; (3) a future conditions without the

implementation of any Comprehensive Everglades Restoration

Plan projects, using predicted 2050 hydrology, water demands,

and land use; and (4) a future conditions (year 2050) with the

Comprehensive Everglades Restoration fully implemented

(United States Army Corps of Engineers and South Florida
Water Management District 1999).

In addition, running simulations for a normal rainfall year
(1996) illustrates the role of substrate limitation for oysters in
the Caloosahatchee estuary. Runs were made with and without
the substrate component of the model turned on. Under the

with-substrate scenario, the model utilizes the existing sub-
strate, where the removal of substrate as a metric in the model
assumes no substrate limitation.

RESULTS

Figures 3, 4, 5, and 6 show the HSI results for various

scenarios described earlier. Models display results as an average

Figure 2. Suitability index diagrams created for the eastern oyster using data from Table 1 (adjusted for local conditions by expert opinion and recent

research).
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yearly HSI computed from monthly HSI values. Models also

have capability of displaying results as average yearly habitat
units (results not shown). For the purpose of this paper, we used
average HSI values for the year.

Preferred Flow

The model predicts that establishment of preferred flows
(Table 2) will result in HSI values of 0.5–1 in the majority of the

study area (Fig. 3). This is especially favorable during wet years
when high regulatory releases as well as watershed runoff is
likely to occur, resulting in favorable salinities in the estuary.

Current Conditions

The model predicts that, in wet years, HSI values are

between 0–0.5 in most of the study area (Fig. 3). Under current
conditions, high regulatory discharges occur during May to

October in the Caloosahatchee River, reducing the salinities as
well as flushing the larvae downstream. However, in normal to

dry years, conditions are favorable with HSI values between
0.5–1 in the study area.

2050 without CERP

The model predicts that HSI values and habitat suitability in
the Caloosahatchee estuary without implementation of CERP
(and resulting water management practices) are similar to those

of current conditions (see earlier) with poor HSI values during
the wet years and relatively favorableHSI values during dry and
normal years (Fig. 4).

2050 with CERP

The model predicts that HSI values in the Caloosahatchee
estuary with CERP implementation (and resulting flow pat-

terns) mimic those of preferred flow regimen during normal and
dry years (HSI values between 0.5–1), but with lower values
(0.25–0.75) during a wet year compared with those of preferred

flow regimen under similar conditions (Fig.3). Figure 6 com-
pares the HSI values for year 2050 with and without the CERP
for a six-year period of rainfall (1995–2000).

Role of Substrate

When simulations were run to examine the yearly HSI values

for oysters in the Caloosahatchee Estuary under normal rain
conditions, with existing substrate as a parameter, HSI values
were extremely low (0–0.25) in most areas, with limited areas

showing HSI values between 0.5–0.75. When substrate was
removed as a factor (implying that substrate was not a limiting
factor), most of the HSI values in the estuarine portion of the

Caloosahatchee River ranged between 0.5–1 (Fig. 5).
Results from the HSI model indicate that preferred flow fre-

quency distribution and future conditions with implementation
of the Comprehensive Everglades Restoration Plan have higher

HSI values than existing conditions or the future without the
Comprehensive Everglades Restoration Plan.

TABLE 2.

Preferred flow regimen for the Caloosahatchee estuary
based on a hydrologic target based on an optimum inflow range

that includes natural variation in salinity to insure a diverse

composition of estuarine biota (Chamberlain & Doering 1998a,
1998b, Doering & Chamberlain 1999, 2000, Doering et al. 1999,

2001, 2002, Chamberlain et al. 2003). The frequency distribution

of flows from Lake Okeechobee (S-79 lock and dam) is without

tidal basin contribution.

Discharge Range in cubic

meters per second (cms)

from S-79

Percent Distribution

of Flows from S-79

0–12.75 0.0%

12.75–14.16 42.8%

14.16–22.65 31.7%

22.65–42.48 19.2%

42.48–79.29 5.6%

79.29–127.43 0.7%

>127.43 0.0%

Figure 3. HSI values for the eastern oyster in the Caloosahatchee estuary under current conditions of flow (based on 2000 hydrology and land use)

compared with preferred flow frequency (Table 2) for wet (1995), dry (2000), and normal (1996) rain fall years.

0.00–0.25, 0.25–0.50, 0.50–0.75, 0.75–1.00.
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DISCUSSION

The United States Fish and Wildlife Service (USFWS) orig-
inally developed species-specific HSI models to evaluate envi-
ronmental impact and project planning studies (Schamberger &

Farmer 1978, United States Fish & Wildlife Service 1981),
including one for the eastern oyster (Cake 1983). This HSI was
later modified and adapted for use in the Galveston Bay by

simplifying the model structure and better accounting for local
stressors of importance (high salinity, disease, and parasitism
on oysters) (Soniat & Brody 1988).

HSIs and other habitat assessment models have become

common tools to examine effects of habitat changes on specific
species resulting from land use changes, watershed alteration,
mitigation, and restoration (USFWS 1981, Soniat & Brody

1988, Turner et al. 1995, Mladenoff et al. 1997, Elliott et al.
1999, Curnutt et al. 2000, Livingston et al. 2000, Larson et al.
2003, Tarboton et al. 2004). As a component of a larger

forecasting model, the current study developed a HSI for the
eastern oyster to examine the ecological effects of a series of
restoration alternatives proposed for the C43 West Basin

Reservoir project. The model takes into account primary
environmental conditions (salinity, flow, and substrate) in the
Caloosahatchee estuary and simulates effects of these on
oysters. Because oysters are physiologically adapted to local

conditions and their responses vary geographically with varia-
tions in seasonal temperature, food availability, seasonal salin-

ity patterns, disease, and predation; it is not easy to adapt

existing HSI models to estuaries in Southwest Florida. For

example, high salinity conditions prevail in the estuary during

summer and early fall in the western Gulf of Mexico estuaries,

whereas low salinity conditions are experienced by oysters

inhabiting estuaries along the eastern Gulf of Mexico (Volety

et al. 2003). In addition, temperature for spawning and duration

of spawning varies geographically in oysters. Therefore, suit-

able ranges for environmental metrics should be specific to the

study area to optimize model sensitivity and accuracy (e.g.,

Layher & Maughan 1985).

Because of the nature of the Caloosahatchee estuary, flow is

an essential criterion for identifying and delineating habitat

suitability. During the wet season, high flow events resulting

from excess rainfall and regulatory releases from Lake Okee-

chobee can flush larvae from the estuary to the high salinity

downstream locations (Volety et al. 2003) and/or into the Gulf

of Mexico where substrate is limited, preventing larval settle-

ment. This flushing can be more detrimental to oyster popula-

tion than lower salinities resulting from excess freshwater

entering the estuary. Whereas the previous models considered

frequency of killing floods (salinity), flow is not considered in

other existing HSI models for the eastern oyster (Cake 1983,

Soniat & Brody 1988).

Model results show that under the four different hydrology

and land use scenarios examined, the preferred flow frequency

Figure 4. HSI values for the eastern oyster in the Caloosahatchee Estuary using 2050 without the Comprehensive Everglades Restoration hydrology and

land use conditions compared with 2050 with complete implementation of the Comprehensive Everglades Restoration hydrology and land use conditions.

0.00–0.25, 0.25–0.50, 0.50–0.75, 0.75–1.00.

Figure 5. HSI values for the Caloosahatchee Estuary under the preferred flow regimen for model runs with and without substrate.

0.00–0.25, 0.25–0.50, 0.50–0.75, 0.75–1.00.
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and the 2050 with restoration (CERP) conditions produce

higher HSI values than existing conditions (2000) and 2050
without restoration. The preferred flow frequency and the 2050
with restoration (CERP) conditions produce similar results

during a normal and dry year and the existing conditions (2000)
and 2050 without restoration produce similar results in all three
rainfall years (wet, dry, and normal). The C43 West Basin
Reservoir project, the most substantial project currently sched-

uled to occur in the study area, will capture high flows in the wet
season and store water to provide a minimum flow to the
estuary during the dry season. By capturing flow, number and

magnitude of detrimental high flow events to the estuary will be
greatly reduced. This is especially important during spawning
season. By holding the water and making it available for a

minimum flow in the dry season, the extent of high salinity areas
in the estuary will also be reduced, reducing oyster predation
and disease. In addition, results show that during a wet year,
even with the proposed restoration (CERP) fully implemented,

habitat suitability is suboptimal when compared with the
preferred flow conditions (Figs. 3 and 5). This suggests that
the current restoration plan (CERP) is not enough to achieve

wet season flows into the estuary that will result in optimal
habitat quality for oysters. The Southwest Florida Feasibility
Study (SWFFS), initiated by CERP, will address additional

water resource needs in Southwest Florida, including additional
water storage in the Caloosahatchee Basin. It should be strongly
noted that the preferred flow regimen (Table 2) into the estuary

cannot be accomplished without full implementation of CERP,
including the SWFFS.

Modeling results also indicate that under the current flow
regimen and existing conditions in the Caloosahatchee estuary,

the estuary is severely substrate-limited in areas otherwise
optimal for oysters, resulting in poor HSI values (0–0.25) in
those areas (Fig. 6). An additional value of the model is that it

can be used to identify areas where substrate should be restored
to achieve maximum colonization by oyster larvae, thus
reducing uncertainty associated with restoration of oyster reefs.

The forecasting model for the C43 West Basin Reservoir
Project incorporates the oyster HSI model with habitat suit-
ability models for other species. There are several advantages of
this type of forecasting tool. The HSI models are easily

developed using scientific literature, local knowledge, and field
data. This tailors the models to local conditions allowing them
to depict results that are more accurate by accounting for

physiological adaptations to local environments. Incorporation
of the HSIs into a GIS interface makes overall interpretation of

results easier for managers by providing visual aids and
allowing them to display details for any specific location within
the estuary. Additionally, HSI results easily feed into a multi-
criteria decision analysis model, the final step in the forecasting

process.
When using forecasting models, it is important to remember

that output provided byHSIs depends on the quality of data put

into the HSImodel. In the current HSImodel, geographic range
specific, peer-reviewed scientific data, in concert with data from
local monitoring programs that use published procedures and

have QA/QC procedures, minimized uncertainty (Volety et al.
2003). Whereas the current simplified HSI model has several
advantages stated earlier, the model is not comprehensive and
has certain limitations. For example, whereas temperature,

salinity, flow, and substrate are included in the model, and
serve to estimate indirectly, effects of disease, predation, and
reproduction, their specific role and contribution to habitat

suitability are not examined. However, when such information
becomes available, it can be incorporated into the model
provided their input is deemed critical to decision making.

Substrate availability was examined by using existing oyster
reefs and mangrove roots that support visible growth of oyster
clusters and that provide hard substrate for spat settlement.

Because other hard substrate such as boat docks and rip-rap are
not examined, the substrate availability may be slightly under-
estimated in this model. However, given the size of the estuarine
portion of the Caloosahatchee River, contribution of these

structures towards suitable substrate is negligible. In addition,
HSIs only provide information about quality of their habitat
at a fixed time point and not take into account population

dynamics of organisms modeled, nor do they take into account
the spatial and temporal changes of species-habitat relations
(Turner et al. 1995). For example, in the case of the oyster HSI

model, the model does not predict if oyster larval settlement is
actually occurring; it only examines suitability of the habitat
for settlement and at any given point in time. Whether
settlement is actually occurring is beyond the scope of this

model. Additionally, actual oyster population densities are
dependent on what has happened in the estuary in previous
years, if settlement conditions are poor one year, the following

year there may be a decrease in the population of spawning
females and in turn a decrease in larvae for settlement. This may
not be apparent in the model results, which strictly looks at

average monthly and yearly habitat conditions and is where
scientific opinion becomes necessary in model interpretation
(Barnes et al. 2006).

Also, it should be cautioned that resource managers should
not depend on HSI models alone for selection of restoration or
management alternatives, but should also incorporate HSIs
with monitoring and research plans. This should be accompa-

nied by efforts to verify the model and calibrate it as new data
become available (Barnes & Mazzotti 2005).

In summary, previously developed oyster HSI models (Cake

1983, Soniat & Brody 1988) were optimized for use in the
Caloosahatchee estuary and augmented by incorporating GIS
for visual display. Modeling efforts by Livingston et al. (2000)

plotted the results of freshwater input on themortality of oysters
using GIS. In the current study, whereas the model is optimized
for use in the Caloosahatchee estuary, it can be applied to other

Figure 6. Average yearly HSI scores for year 2050 with and without the

implementation of the Comprehensive Everglades Restoration Plan. For

this model run, substrate is not limiting.
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estuaries by adjusting variable values to mimic local conditions.

This model will enhance decision making by resource managers

by providing a tool that is based on real scientific data rather

than using informal judgments or professional opinion and is

easily exportable for use in other estuaries in Florida and other

Gulf States with minor modifications.
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